REGISTRATION NUMBER:.....

UNIVERSITY OF CAPE COAST COLLEGE OF EDUCATION STUDIES NATURE OF MATHEMATICS Credit: 3hours

TORE OF MATHEMATICS CIEUR. Shour

Time Allowed: 1hour

INSTRUCTION: There are two sections of this paper- Section A and Section B.

Answer <u>all</u> questions in both sections.

QUIZ 1

Section A(24Marks)

Read each statement/question carefully and decide on what the answer is, and write the letter that corresponds to your answer on the answer sheet provided.

Award 2 marks for each correct response

1. There is no general agreement on precisely what mathematics is.

- A. False
- **B.** True
- 2. The equation $x^n + y^n = z^n$ has no solution in integers for $n \ge 3$.
 - A. False
 - **B.** True
- 3. Who defined mathematics as: "The science of quantity".
 - A. Aristotle
 - B. Comte
 - C. Peirce
 - D. Sawyer
- 4. The philosophy that expresses Mathematics as "the manipulation of meaningless symbols of a first-order language according to explicit, syntactical rules" is_____.
 - A. Absolutism
 - **B.** Formalism
 - C. Intuitionism
 - D. Platonism
- 5. One of the highest values in mathematics, like science is its_____.
 - A. abstractness
 - B. openness
 - C. preciseness
 - D. proofs
- 6. Who claims "A mathematician is a blind man in a dark room looking for a black cat that isn't there."?
 - A. Darwin
 - B. Hardy
 - C. Poincaré

- D. Wigner
- 7. Who claims that "Mathematics is a creative or inventive process"?
 - A. Darwin
 - B. Kline
 - C. Russell
 - D. Skemp
- 8. A Cycle of Mathematics Investigation involves representation, manipulation and ______.
 - A. factorization.
 - B. simplification.
 - C. validation.
 - D. verification.
- 9. Modern view of mathematics is that it is a "science of pattern and ______.
 - A. facts.
 - B. numbers.
 - C. order.
 - D. theorems.
- 10. Multiplication is regarded as repeated addition. Thus "3 lots of 9" means " 3×9 " and this means that_____
 - A. 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 = 27
 - **B.** 9 + 9 + 9 = 27
- 11 Which one of the following solids is composed of 20 triangular faces?
 - A. Dodecahedron
 - B. Icosahedron
 - C. Octagon
 - D. Tetrahedron
- 12 6 is an exam[le of a perfect number.
 - A. True
 - B. False

SECTION B(26 Marks)

Answer all questions in this section.

In each question show all details of working including your answer.

- 13. (a) State the principle of mathematical induction. (2 Marks)
- (b) Use the principle of mathematical induction to prove that "the sum of the first *n* even positive integers is n(n + 1). (8 Marks)

MARKING SCHEME

(a) A statement involving the natural number n is true for every $n \in N$ provided a	that:
the statement is true in the special case $n = 1$	
the truth of the statement for $n = k, k \in N \Rightarrow$ the truth of the statement for $n =$	= <i>k</i> + 1. B2
(b) The preposition is $\sum_{r=1}^{n} 2r = 2 + 4 + 6 + + 2n = n(n + 1)$	B1
(i) Verify for $n = 1$:	
When $n = 1$: LHS = 2	M1
RHS = 1(1+1) = 2	A1
Hence the preposition is true for $n = 1$.	
(ii) Suppose it is true for $n = k$	
That is $\sum_{r=1}^{k} 2r = 2 + 4 + 6 + \dots + 2r = k(k+1)$	B1
Is the statement also true for $n = k + 1$?	
When $n = k + 1$:	
LHS = $\sum_{r=1}^{k+1} 2r = 2 + 4 + 6 + \dots + 2r + 2(k+1) = k(k+1) + 2(k+1)$	M1A1
=(k+1)(k+2)	A1
= RHS for $n = k + 1$	B1

14. (a) (a) Find the HCF of 108 and 300

(6 m arks)

Marking Scheme

(a) $108 = 2 \times 2 \times 3 \times 3 \times 3 = 2^2 \times 3^3$ M1A1

$$300 = 2 \times 2 \times 3 \times 5 \times 5 = 2^2 \times 3 \times 5^2$$
 M1A1

Representatives with the smallest exponent: $2^2 \times 3$.	M1
Therefore, HCF of 108 and 300 is 12.	A1

(b)

$108 = 2 \times 2 \times 3 \times 3 \times 3 = 2^2 \times 3^3$	M1A1
$144 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 = 2^4 \times 3^2$	M1A1

Representatives with the highest exponent: $2^4 \times 3^3$. M1

The product of $2^4 \times 3^3$ is 432. Therefore, LCM of 108 and 144 is 432. A1

(C) Use partterns to show that $-3 \times -5 = 15$ (4 Marks)

 $-5 \times 5 = -25$ $-5 \times 4 = -20$ $-5 \times 3 = -15$ $-5 \times 2 = -10$ $-5 \times 1 = -5$ $-5 \times 0 = 0$ $-5 \times -1 = 5$ $-5 \times -2 = 10$ $.-5 \times -3 = 15$

B2

Observe from the pattern that in the first case the second factor decreases by 1 from 5 to 0 while the product consistently increases by 5 from -25 to 0. Following the pattern we should expect the next second factor to be -1 and the next product to be 5 more than zero and so should be 5, giving $-5 \times -1 = 5$ indicating a product of two negative numbers yielding a positive number. The next product, $-5 \times -2 = 10$ also yielded a positive number. Observing the pattern in the remaining THUS $-5 \times -3 = 15$ B1 B1